Original research article
14 Jan 2015
Original research article | 14 Jan 2015
Coupled cellular automata for frozen soil processes
R. M. Nagare et al.
Related authors
A synthesis of three decades of hydrological research at Scotty Creek, NWT, Canada
William Quinton, Aaron Berg, Michael Braverman, Olivia Carpino, Laura Chasmer, Ryan Connon, James Craig, Élise Devoie, Masaki Hayashi, Kristine Haynes, David Olefeldt, Alain Pietroniro, Fereidoun Rezanezhad, Robert Schincariol, and Oliver Sonnentag
Hydrol. Earth Syst. Sci., 23, 2015–2039, https://doi.org/10.5194/hess-23-2015-2019,https://doi.org/10.5194/hess-23-2015-2019, 2019
Short summary
Related subject area
A review of the global soil property maps for Earth system models
Yongjiu Dai, Wei Shangguan, Nan Wei, Qinchuan Xin, Hua Yuan, Shupeng Zhang, Shaofeng Liu, Xingjie Lu, Dagang Wang, and Fapeng Yan
SOIL, 5, 137–158, https://doi.org/10.5194/soil-5-137-2019,https://doi.org/10.5194/soil-5-137-2019, 2019
Short summary
Deriving pedotransfer functions for soil quartz fraction in southern France from reverse modeling
Jean-Christophe Calvet, Noureddine Fritz, Christine Berne, Bruno Piguet, William Maurel, and Catherine Meurey
SOIL, 2, 615–629, https://doi.org/10.5194/soil-2-615-2016,https://doi.org/10.5194/soil-2-615-2016, 2016
Short summary
Morphological dynamics of gully systems in the subhumid Ethiopian Highlands: the Debre Mawi watershed
Assefa D. Zegeye, Eddy J. Langendoen, Cathelijne R. Stoof, Seifu A. Tilahun, Dessalegn C. Dagnew, Fasikaw A. Zimale, Christian D. Guzman, Birru Yitaferu, and Tammo S. Steenhuis
SOIL, 2, 443–458, https://doi.org/10.5194/soil-2-443-2016,https://doi.org/10.5194/soil-2-443-2016, 2016
Short summary
Quantification of the impact of hydrology on agricultural production as a result of too dry, too wet or too saline conditions
Mirjam J. D. Hack-ten Broeke, Joop G. Kroes, Ruud P. Bartholomeus, Jos C. van Dam, Allard J. W. de Wit, Iwan Supit, Dennis J. J. Walvoort, P. Jan T. van Bakel, and Rob Ruijtenberg
SOIL, 2, 391–402, https://doi.org/10.5194/soil-2-391-2016,https://doi.org/10.5194/soil-2-391-2016, 2016
Short summary
Sediment concentration rating curves for a monsoonal climate: upper Blue Nile
Mamaru A. Moges, Fasikaw A. Zemale, Muluken L. Alemu, Getaneh K. Ayele, Dessalegn C. Dagnew, Seifu A. Tilahun, and Tammo S. Steenhuis
SOIL, 2, 337–349, https://doi.org/10.5194/soil-2-337-2016,https://doi.org/10.5194/soil-2-337-2016, 2016
Short summary
Interactions between organisms and parent materials of a constructed Technosol shape its hydrostructural properties
Maha Deeb, Michel Grimaldi, Thomas Z. Lerch, Anne Pando, Agnès Gigon, and Manuel Blouin
SOIL, 2, 163–174, https://doi.org/10.5194/soil-2-163-2016,https://doi.org/10.5194/soil-2-163-2016, 2016
Short summary
Cited articles
Anderson, D. M. and Morgenstern, N. R.: Physics, chemistry, and mechanics of frozen ground: A review, in: Proceedings Second International Conference on Permafrost, Yakutsk, U.S.S.R., North American Contribution, US National Academy of Sciences, Washington, DC, 1973.
Campbell, G. S.: Soil physics with BASIC: Transport models for soil-plant systems, Elsevier, New York, 1985.
Cervarolo, G., Mendicino, G., and Senatore, A.: A coupled ecohydrological–three-dimensional unsaturated flow model describing energy, H
2O and CO
2 fluxes, Ecohydrol., 3, 205–225, 2010.
Churchill, R. V.: Operational mathematics, McGraw-Hill Companies, New York, 1972.
Dall'Amico, M., Endrizzi, S., Gruber, S., and Rigon, R.: A robust and energy-conserving model of freezing variably-saturated soil, The Cryosphere, 5, 469–484, https://doi.org/10.5194/tc-5-469-2011, 2011.
Hansson, K. and Lundin, L. C.: Equifinality and sensitivity in freezing and thawing simulations of laboratory and in situ data, Cold Reg. Sci. Technol., 44, 20–37, 2006.
Hansson, K., Simunek, J., Mizoguchi, M., Lundin, L. C., and van Genuchten, M. T.: Water flow and heat transport in frozen soil: Numerical solution and freeze-thaw applications, Vadose Zone J., 3, 693–704, 2004.
Hayashi, M., Goeller, N., Quinton, W. L., and Wright, N.: A simple heat-conduction method for simulating the frost-table depth in hydrological models, Hydrol. Process., 21, 2610–2622, 2007.
Hoekstra, A. G., Kroc, J., and Sloot, P. M. A.: Introduction to modeling of complex systems using cellular automata, in: Simulating complex systems by cellular automata, edited by: Kroc, J., Sloot, P. M. A., and Hoekstra, A. G., Springer, Berlin, 2010.
Hutt, M. T. and Neff, R.: Quantification of spatiotemporal phenomena by means of cellular automata techniques, Phys. A, 289, 498–516, 2001.
Ilachinski, A.: Cellular automata: A discrete universe, World Scientific Publishing Company, Singapore, 2001.
Johansen, O.: Thermal conductivity of soils, Cold Regions Research and Engineering Laboratory, Trond-Heim (Norway), 1975.
Kollet, S. J. and Maxwell, R. M.: Integrated surface–groundwater flow modeling: A free-surface overland flow boundary condition in a parallel groundwater flow model, Adv. Water Res., 7, 945–958, 2006.
Lunardini, V. J.: Freezing of soil with phase change occurring over a finite temperature difference, in: Freezing of soil with phase change occurring over a finite temperature difference, 4th international offshore mechanics and arctic engineering symposium, ASM, 1985.
McKenzie, J. M., Voss, C. I., and Siegel, D. I.: Groundwater flow with energy transport and water-ice phase change: Numerical simulations, benchmarks, and application to freezing in peat bogs, Adv. Water Resour., 30, 966–983, 2007.
Mendicino, G., Senatore, A., Spezzano, G., and Straface, S.: Three-dimensional unsaturated flow modeling using cellular automata, Water Resour. Res., 42, W11419, https://doi.org/10.1029/2005WR004472, 2006.
Mizoguchi, M.: Water, heat and salt transport in freezing soil, University of Tokyo, Tokyo, 1990.
Nagare, R. M., Schincariol, R. A., Quinton, W. L., and Hayashi, M.: Effects of freezing on soil temperature, freezing front propagation and moisture redistribution in peat: laboratory investigations, Hydrol. Earth Syst. Sci., 16, 501–515, https://doi.org/10.5194/hess-16-501-2012, 2012.
Painter, S.: Three-phase numerical model of water migration in partially frozen geological media: Model formulation, validation, and applications, Comput. Geosci., 1, 69–85, 2011.
Quinton, W. L. and Hayashi, M.: Recent advances toward physically-based runoff modeling of the wetland-dominated central Mackenzie River basin, in: Cold region atmospheric and hydrologic studies. The Mackenzie GEWEX experience: Volume 2: Hydrologic processes, edited by: Woo, M., Springer, Berlin, 2008.
Smerdon, B. D. and Mendoza, C. A.: Hysteretic freezing characteristics of riparian peatlands in the western boreal forest of Canada, Hydrol. Process., 24, 1027–1038, 2010.
Stähli, M. and Stadler, D.: Measurement of water and solute dynamics in freezing soil columns with time domain reflectometry, J. Hydrol., 195, 352–369, 1997.
Stallman, R. W.: Steady 1-dimensional fluid flow in a semi-infinite porous medium with sinusoidal surface temperature, J. Geophys. Res., 70, 2821–2827, 1965.
Stefan, J.: Uber die Theorie der Eisbildung, insbesondere uber die Eisbildung im Polarmeere, Sitzungs-berichte der Osterreichischen Akademie der Wissenschaften Mathematisch-Naturwissen-schaftliche Klasse, Abteilung 2, Mathematik, Astronomie, Physik, Meteorologie und Technik, 98, 965–983, 1889.
Van Genuchten, M. T.: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Am. J., 44, 892–898, 1980.