Journal cover Journal topic
SOIL An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: indexed IF
    indexed
  • CiteScore value: 7.57 CiteScore
    7.57
  • SNIP value: 2.708 SNIP 2.708
  • SJR value: 2.150 SJR 2.150
  • IPP value: 7.02 IPP 7.02
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 17 Scimago H
    index 17
Volume 1, issue 2
SOIL, 1, 603-612, 2015
https://doi.org/10.5194/soil-1-603-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
SOIL, 1, 603-612, 2015
https://doi.org/10.5194/soil-1-603-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Review article 08 Sep 2015

Review article | 08 Sep 2015

Can we manipulate root system architecture to control soil erosion?

A. Ola, I. C. Dodd, and J. N. Quinton A. Ola et al.
  • Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK

Abstract. Soil erosion is a major threat to soil functioning. The use of vegetation to control erosion has long been a topic for research. Much of this research has focused on the above-ground properties of plants, demonstrating the important role that canopy structure and cover plays in the reduction of water erosion processes. Less attention has been paid to plant roots. Plant roots are a crucial yet under-researched factor for reducing water erosion through their ability to alter soil properties, such as aggregate stability, hydraulic function and shear strength. However, there have been few attempts to specifically manipulate plant root system properties to reduce soil erosion. Therefore, this review aims to explore the effects that plant roots have on soil erosion and hydrological processes, and how plant root architecture might be manipulated to enhance its erosion control properties. We demonstrate the importance of root system architecture for the control of soil erosion. We also show that some plant species respond to nutrient-enriched patches by increasing lateral root proliferation. The erosional response to root proliferation will depend upon its location: at the soil surface dense mats of roots may reduce soil erodibility but block soil pores thereby limiting infiltration, enhancing runoff. Additionally, in nutrient-deprived regions, root hair development may be stimulated and larger amounts of root exudates released, thereby improving aggregate stability and decreasing erodibility. Utilizing nutrient placement at specific depths may represent a potentially new, easily implemented, management strategy on nutrient-poor agricultural land or constructed slopes to control erosion, and further research in this area is needed.

Publications Copernicus
Download
Short summary
Plant roots are crucial in soil erosion control. Moreover, some species respond to nutrient-rich patches by lateral root proliferation. At the soil surface dense mats of roots may block soil pores thereby limiting infiltration, enhancing runoff; whereas at depth local increases in shear strength may reinforce soils at the shear plane. This review considers the potential of manipulating plant roots to control erosion.
Plant roots are crucial in soil erosion control. Moreover, some species respond to nutrient-rich...
Citation
Share