Supplement of

Identifying and quantifying geogenic organic carbon in soils – the case of graphite

Jeroen H. T. Zethof et al.

Correspondence to: Jeroen H. T. Zethof (jeroen.zethof@tu-dresden.de)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.
Figure S1. Raman spectra of the graphite standard (black), graphitic schist (red) and soil of calibration set 1 (i.e. natural graphite containing soil, blue). Vertical lines indicate the peaks for amorphous carbon (1342/1339 cm$^{-1}$) and peaks for graphitic carbon (1575 cm$^{-1}$ standard/schist and 1596 cm$^{-1}$ for soil of calibration set 1). Indicated are the D1 band (1350 cm$^{-1}$), caused by plane defects and heteroatoms in the carbon structure, G (1580 cm$^{-1}$), crystalline carbon i.e. pure graphite, and D’ band (1620 cm$^{-1}$), caused by disordered graphitic lattices.
Fig. S2: Thermogravimetric analysis of artificial soil 1 before and after acid fumigation with HCl, as described in section 2.3.

Fig. S3: Thermogravimetric analysis of artificial soil 2, without carbonates, before and after acid fumigation with HCl, as described in section 2.3.
Fig. S4: Exploration of the best TGA temperature range (x – y axis) for creating a graphite content prediction model, based on the root-mean-square error (RMSE) data for calibration set 1 (color) and calibration set 2 (size). The smaller the RMSE, the better the model fitted to the data.
Fig. S5: Total carbon of the two calibrations sets as measured by the Elemental analyser and Soli-TOC device.